The effect of surface properties of polycrystalline, single phase metal coatings on bacterial retention.
نویسندگان
چکیده
In the food industry microbial contamination of surfaces can result in product spoilage which may lead to potential health problems of the consumer. Surface properties can have a substantial effect on microbial retention. The surface characteristics of chemically different coatings (Cu, Ti, Mo, Ag, Fe) were defined using white light profilometry (micro-topography and surface features), atomic force microscopy (nano-topography) and physicochemical measurements. The Ag coating had the greatest topography measurements and Fe and Mo the least. Mo was the most hydrophobic coating (lowest γAB,γ(+), γ(-)) whilst Ag was the most hydrophilic (greatest γAB,γ(+), γ(-)). The physicochemical results for the Fe, Ti and Cu coatings were found to lie between those of the Ag and Mo coatings. Microbiological retention assays were carried out using Listeria monocytogenes, Escherichia coli and Staphylococcus aureus in order to determine how surface properties influenced microbial retention. It was found that surface chemistry had an effect on microbial retention, whereas the shape of the surface features and nano-topography did not. L. monocytogenes and S. aureus retention to the surfaces were mostly affected by surface micro-topography, whereas retention of E. coli to the coatings was mostly affected by the coating physicochemistry. There was no trend observed between the bacterial cell surface physicochemistry and the coating physicochemistry. This work highlights that different surface properties may be linked to factors affecting microbial retention hence, the use of surface chemistry, topography or physicochemical factors alone to describe microbial retention to a surface is no longer adequate. Moreover, the effects of surface parameters on microbial retention should be considered individually for each bacterial genus.
منابع مشابه
Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering
Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...
متن کاملEffect of silica particles on adhesion strength of polyvinyl chloride coatings on metal substrates
The aim of this study was to improve the adhesion performance of plasticized polyvinyl chloride (PVC) coatings on steel substrates by using nanoparticles. For this purpose, the PVC plastisol with different concentration of nano-silica was prepared and applied to bond steel joints. The adhesive strength of the joints was determined by single-lap shear test. Moreover, mechanical properties and mi...
متن کاملEffect of Surface Roughness Morphology on Bond Strength of Thermal Sprayed WC-10Co-4Cr Ceramic/Metal Coating
In this study, the effect of surface roughness and roughness morphology on the bond strength of WC-Co-Cr coatings has investigated. The three different surfaces morphology are use for this purpose. The first and tow samples sandblasted with alumina and silicon carbide respectively. Other sample no sandblasted before spraying process. The same WC-10Co-4Cr coating deposited on the substrates with...
متن کاملAN INVESTIGATION ON EFFECT OF BOND COAT REPLACEMENT ON HOT CORROSION PROPERTIES OF THERMAL BARRIER COATINGS
In the present study NiCrAlY bond coating layer was produced by electroplating against common atmospheric plasma spraying (APS). Both types of the bond coats were applied on IN738LC base metal then, the YSZ (ZrO2-8% Y2O3) thermal barrier top layer was coated by atmospheric plasma spray technique. Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come ...
متن کاملPreparation ZrO2 ceramic coating by electrolytic plasma oxidation and study of the effect of monoclinic/tetragonal phases on the corrosion resistance of the coating
In this paper, zirconium oxide ceramics coating (ZrO2) were produced on Zircaloy-4 alloy using plasma electrolytic oxidation (PEO). Sodium silicate and Sodium aluminate based electrolyte was selected in PEO process and the effects of the concentration of Sodium aluminate (0, 2.5, 5, 7.5, and 10 g/L) on the microstructure, phase structure and the behavior of corrosion of formed coatings. In orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of food microbiology
دوره 197 شماره
صفحات -
تاریخ انتشار 2015